病毒容易发生变异。除类病毒外,病毒可以说是生命体中最简单的成员。它的遗传密码或基因组主要集中在核酸链上,只要这种核酸链发生任何变化都会影响它们后代的特性表现。
实际上,病毒的基因组在其增殖过程中不是一成不变的,而是时时刻刻都自动地发生突变。其中大多数突变是致死性的,只有少数能生存下来。由于病毒在一次感染中,一个病毒粒子要增殖几百万次,存在产生突变的机会。
因此一种病毒从群体水平看,在遗传学上不是同源的,故病毒的“种”在严格意义上,不是分类学上的种,而应称之为准种。病毒的自然变异是非常缓慢的,但这种变异过程可通过外界强烈因素的刺激而加快变异。
突变病毒的突变(Mutation)是指基因组中核酸碱基顺序上的化学变化,可以是一个核苷酸的改变,也可为上百上千个核苷酸的缺失或易位。病毒复制中的自然突变率10-5~10-8,而各种物理、化学诱变剂(Mutagens)可提高突变率,如温度、射线、5-溴尿嘧啶、亚硝酸盐等的作用均可诱发突变。突变株与原先的野生型病毒(Wild-type virus)特性不同,表现为病毒毒力、抗原组成、温度和宿主范围等方面的改变。
1、毒力改变有强毒株及弱毒株,后者可制成弱毒活病毒疫苗,如脊液灰质炎疫苗、麻疹疫苗等。
2、条件致死突变株指病毒突变后在特定条件下能生长,而在原来条件下不能繁殖而被致死。其中最主要是的是温度敏感条件致死突变株(Temperature-sensitive conditional lethalmutant),简称温度敏感突变株(ts株),在特定温(28~35℃)下孵育则能增殖,在非特定温度(37~40℃)下孵育则不能繁殖,而野生型在两种温度均能增殖。显然是由于在非特定温度下,突变基因所编码的蛋白缺乏其应有功能。因此大多数ts株同时又是减毒株。现已从许多动物病毒中分离出ts株,选择遗传稳定性良好的品系用于制备碱毒活疫苗,如流感病毒及脊髓灰制裁炎病毒ts株疫苗。
3、宿主适应性突株例如狂犬病毒突变株适应在兔脑内增殖,由“街毒”变为“固定毒”,可制成狂犬病疫苗。
基因重组当二种有亲缘关系的不同病毒感染同一宿主细胞时,它们的遗传物质发生交换,结果产生不同于亲代的可遗传的子代,称为基因重组(Genetic recombination)。
1、活病毒间的重组例如流感病毒两个亚型之间可基因重组,产生新的杂交株,即具有一个亲代的血凝素和另一亲代的神经氨酸酶。这在探索自然病毒变异原理中具有重要意义。流感每隔十年左右引起一次世界性大流行,可能是由于人的流感病毒与某些动物(鸡、马、猪)的流感病毒间发生基因重组所致。
2、灭活病毒间的重组例如用紫外线灭活的两株同种病毒,若一同培养后,常可使灭活的病毒复活,产生出感染性病毒体,此称为多重复活(Multiplicity reactivation),这是因为两种病毒核酸上受损害的基因部位不同,由于重组合相互弥补而得到复活。因此现今不用紫外线灭活病毒制造疫苗,以防病毒复活的危险。
3、死活病毒间的重组例如将能在鸡胚中生长良好的甲型流感病毒(A0或A1亚型)疫苗株经紫外线灭活后,再加亚洲甲型(A2亚型)活流感病毒一同培养,产生出具有前者特点的A2亚型流感病毒,可供制作疫苗,此称为交叉复活(Cross reactivation)。
基因产物的相互作用1、表型混合(Phenotype mixing)两种病毒混合感染后,一个病毒的基因组偶而装入另一病毒的衣壳内,或装入两个病毒成分构成的衣壳内,发生表型混合。这种混合是不稳定的,传代后可恢复其原来的特性。
2、基因型混合(Genotype mixing)指两种病毒的核酸偶而混合装在同一病毒衣壳内,或两种病毒的核衣壳偶尔包在一个囊膜内,但它们的核酸都未重组合,所以没有遗传性。
3、互补(Complementation)指两种病毒通过其产生的蛋白质产物(如酶、衣壳或囊膜)相互间补助不足,例如辅助病毒与缺损病毒间、两个缺损病毒间、活病毒与死病毒间都可以互补,互补后仍产生原来病毒的子代。
4、增强(Enhancement)指两种病毒混合培养时,一种病毒能促进增强另一种病毒的产量,可能是因为前者压制了产生干扰素所致。
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。