莱布尼茨被誉为十七世纪的亚里士多德

中文名称:戈特弗里德·威廉·莱布尼茨

外文名称:Gottfried Wilhelm Leibniz

国籍:德国

民族:德意志人

出生地:神圣罗马帝国莱比锡

出生日期:1646年7月1日

逝世日期:1716年11月14日

职业:哲学家,政治家

毕业院校:莱比锡大学

信仰:自然神学

主要成就:哲学:大陆理性主义高峰,单子论,预见现代逻辑学和分析哲学诞生;数学:微积分,二进制

代表作品:《神义论》,《单子论》,《论中国人的自然神学》

智商:220

德国著名哲学家、数学家:莱布尼茨,莱布尼茨的生平简介

戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz,1646年7月1日-1716年11月14日),德国哲学家、数学家,历史上少见的通才,被誉为十七世纪的亚里士多德。他本人是一名律师,经常往返于各大城镇,他许多的公式都是在颠簸的马车上完成的,他也自称具有男爵的贵族身份。

莱布尼茨在数学史和哲学史上都占有重要地位。在数学上,他和牛顿先后独立发现了微积分,而且他所使用的微积分的数学符号被更广泛的使用,莱布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。莱布尼茨还对二进制的发展做出了贡献。

在哲学上,莱布尼茨的乐观主义最为著名;他认为,"我们的宇宙,在某种意义上是上帝所创造的最好的一个"。他和笛卡尔、巴鲁赫·斯宾诺莎被认为是十七世纪三位最伟大的理性主义哲学家。莱布尼茨在哲学方面的工作在预见了现代逻辑学和分析哲学诞生的同时,也显然深受经院哲学传统的影响,更多地应用第一性原理或先验定义,而不是实验证据来推导以得到结论。

莱布尼茨在政治学、法学、伦理学、神学、哲学、历史学、语言学诸多方向都留下了著作。

早年生活

1646年7月1日,戈特弗里德·威廉·莱布尼茨出生于神圣罗马帝国的莱比锡,祖父三代人均曾在萨克森政府供职,父亲是Friedrich Leibnütz,母亲是Catherina Schmuck。长大后,莱布尼茨名字的拼法才改成"Leibniz",但是一般人习惯写成"Leibnitz"。晚年时期,他的签名通常写成"von Leibniz",以示贵族身份。莱布尼茨死后,他的作品才公诸于世,作者名称通常是"Freiherr [Baron] G. W. von Leibniz.",但没有人确定他是否确实有男爵的贵族头衔。

莱布尼茨的父亲是莱比锡大学的伦理学教授,在莱布尼茨6岁时去世,留下了一个私人的图书馆。12岁时自学拉丁文,并着手学习希腊文。14岁时进入莱比锡大学念书,20岁时完成学业,专攻法律和一般大学课程。1666年他出版第一部有关于哲学方面的书籍,书名为《论组合术》(de arte combinatoria)。

  任职法庭

1666年莱布尼茨于Altdorf拿到博士学位后,拒绝了教职的聘任,并经由当时政治家Boineburg男爵的介绍,任职服务于美茵茨选帝侯大主教Johann Philipp von Sch?nborn的高等法庭。

1671年发表两篇论文《抽象运动的理论》(Theoria motus abstracti)及《新物理学假说》(Hypothesis physica nova),分别题献给巴黎的科学院和伦敦的皇家学会,在当时欧洲学术界增加了知名度。

1672年莱布尼茨被Johann Philipp派至巴黎,以动摇路易十四对入侵荷兰及其它西欧日尔曼邻国的兴趣,并转投注精力于埃及。这项政治计划并没有成功,但莱布尼茨却进入了巴黎的知识圈,结识了马勒伯朗士和数学家惠更斯等人。这一时期的莱布尼茨特别研究数学,而发明了微积分。

1672及1673年Boineburg和Johann Philipp却相继过世,迫使莱布尼茨最后于1676年离开巴黎而转任职服务于汉诺威的Johann Friedrich公爵。于上任时,顺道于海牙拜访斯宾诺莎,与其数天一同讨论哲学。之后莱布尼茨就到汉诺威管理图书馆,并担任公爵法律顾问。

1680至1685年间,担任哈茨山银矿矿采工程师。在这期间,莱布尼茨致力于风车设计,以抽取矿坑中的地下水。然而受限于技术问题和矿工传统观念的阻力,计划没有成功。

1685年起,再受继任的公爵Ernst August所托,转而开始做其Braunschweig-Lüneburg贵族族谱研究。这项计划一直到莱布尼茨去世前都没有完成。

1686年完成《形而上学论》(Discours de métaphysique)。

1689年为完成Braunschweig-Lüneburg族谱研究,游历于意大利。其时结识耶稣会派遣于中国的传教士,而开始对中国事物有更强烈的兴趣。

1695年于期刊发表《新系统》,进而使莱布尼茨哲学中,关于实体间与心物间之"预定和谐"理论,被广泛认识。

  担任院长

1700年莱布尼茨说服勃兰登堡选帝侯腓特烈三世于柏林成立科学院,并担任首任院长。

1704年完成《人类理智新论》。本文针对洛克的《人类理智论》,用对话的体裁,逐章节提出批评。然因洛克的突然过世,莱布尼茨不愿被落入欺负死者的口实,所以本书在莱布尼茨生前一直都没有出版。

1710年,出于对1705年过世的普鲁士王后Sophie Charlotte的感念,出版《神义论》(Essais de Théodicée)。

1714年于维也纳著写《单子论》(La Monadologie;标题为后人所加)及《建立于理性上之自然与恩惠的原理》。同年,汉诺威公爵Georg Ludwig继任为英国国王乔治一世,却拒绝将莱布尼茨带至伦敦,而将他疏远于汉诺威。

  晚年逝世

1716年11月14日莱布尼茨于汉诺威孤独地过世,除了他自己的秘书外,即使George Ludwig本人正巧在汉诺威,宫廷无其他人参加他的丧礼。直到去世前几个月,才写完一份关于中国人宗教思想的手稿:《论中国人的自然神学》。

历史上少见的通才——莱布尼茨,莱布尼茨有哪些辉煌成就

1646年7月1日,戈特弗里德·威廉·莱布尼茨出生于神圣罗马帝国的莱比锡,祖父三代人均曾在萨克森政府供职,父亲是Friedrich Leibnütz,母亲是Catherina Schmuck。长大后,莱布尼茨名字的拼法才改成"Leibniz",但是一般人习惯写成"Leibnitz"。晚年时期,他的签名通常写成"von Leibniz",以示贵族身份。莱布尼茨死后,他的作品才公诸于世,作者名称通常是"Freiherr [Baron] G. W. von Leibniz.",但没有人确定他是否确实有男爵的贵族头衔。

莱布尼茨的父亲是莱比锡大学的伦理学教授,在莱布尼茨6岁时去世,留下了一个私人的图书馆。12岁时自学拉丁文,并着手学习希腊文。14岁时进入莱比锡大学念书,20岁时完成学业,专攻法律和一般大学课程。1666年他出版第一部有关于哲学方面的书籍,书名为《论组合术》(de arte combinatoria)。

微积分

现今在微积分领域使用的符号仍是莱布尼茨所提出的。在高等数学和数学分析领域,莱布尼茨判别法是用来判别交错级数的收敛性的。

莱布尼茨与牛顿谁先发明微积分的争论是数学界至今最大的公案。莱布尼茨于1684年发表第一篇微分论文,定义了微分概念,采用了微分符号dx,dy。1686年他又发表了积分论文,讨论了微分与积分,使用了积分符号∫。依据莱布尼茨的笔记本,1675年11月11日他便已完成一套完整的微分学。

然而1695年英国学者宣称:微积分的发明权属于牛顿;1699年又说:牛顿是微积分的"第一发明人"。1712年英国皇家学会成立了一个委员会调查此案,1713年初发布公告:"确认牛顿是微积分的第一发明人。"莱布尼茨直至去世后的几年都受到了冷遇。由于对牛顿的盲目崇拜,英国学者长期固守于牛顿的流数术,只用牛顿的流数符号,不屑采用莱布尼茨更优越的符号,以致英国的数学脱离了数学发展的时代潮流。

不过莱布尼茨对牛顿的评价非常的高,在1701年柏林宫廷的一次宴会上,普鲁士国王腓特烈询问莱布尼茨对牛顿的看法,莱布尼茨说道:"在从世界开始到牛顿生活的时代的全部数学中,牛顿的工作超过了一半"

牛顿在1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:"十年前在我和最杰出的几何学家莱布尼茨的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外"(但在第三版及以后再版时,这段话被删掉了)。因此,后来人们公认牛顿和莱布尼茨是各自独立地创建微积分的。

牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼茨。莱布尼茨则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。

莱布尼茨认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他所创设的微积分符号远远优于牛顿的符号,这对微积分的发展有极大影响。1714至1716年间,莱布尼茨在去世前,起草了《微积分的历史和起源》一文(本文直到1846年才被发表),总结了自己创立微积分学的思路,说明了自己成就的独立性。

拓扑学

拓扑学最早称之"位相分析学"(analysis situs),是莱布尼茨1679年提出的,这是一门研究地形、地貌相类似的学科,当时主要研究的是出于数学分析的需要而产生的一些几何问题。关于莱布尼茨对拓扑学的贡献,尚存争论。Mates引用Jacob Freudenthal1954年一篇论文里的话说:

尽管莱布尼茨认为一列点在空间中的位置是由其间距离唯一决定的--当且仅当距离发生变化时点的位置发生相应的改变--他的仰慕者欧拉,在他著名的一篇论文(1736年发表,解决了柯尼斯堡七桥问题及其推广)中,却是在"拓扑变形时点的位置不发生变化"的意义下使用"几何位置"这个名词的。他误信了莱布尼茨是这个概念的创始者。……人们常常意识不到莱布尼茨是在完全不同的意义下使用这个名词的,因此被尊为数学的这个分支领域的奠基人并不恰当。

但平野秀秋持有不同看法,他引用本华·曼德博的话说:

在 莱布尼茨海量的科学成果中探索是发人深省的体验。除了微积分以及其他已经完成的研究之外,大量涉及内容广泛且极富前瞻性的研究对科学发展的推动力势不可 挡。在'填充理论'上即有例子,……在发现莱布尼茨还曾经关注过几何度量的重要性之后,我对他的狂热更甚了。在"欧几里德普罗塔"中……,其使得欧几里德 公理更加严格,他陈述道,……'对直线,我有数种不同的定义。直线是曲线的一种,而曲线的任何部分都是和整体相似的,因此直线也具有这种特性;这不仅适用 于曲线,而且适用于集合。'这个论断今天已经可以被证明。

因而分形几何(由本华·曼德博发扬光大)理论在莱布尼茨的自相似性思想和连续性原理中寻求支持:大自然没有跳跃(拉 丁语"natura non facit saltus",英语"nature does not make jumps")。当莱布尼茨在他的形而上学著作中写道,"直线是曲线的一种,其任何部分都是和整体类似的",他实际上提前两个世纪预言了拓扑学的诞生。至 于"填充理论",莱布尼茨对他的朋友Des Bosses说,"你想象一个圆,然后用三个全等的最大半径的圆填满它,后来的三个小圆又可以以同样的过程被更小的圆填充"。这个过程可以无限地继续下 去,并由此生发出了自相似性的思想。莱布尼茨对于欧氏公理的改进亦包含同样的概念。

符号思维

莱布尼茨有个显著的信仰,大量的人类推理可以被归约为某类运算,而这种运算可以解决看法上的差异:

"精炼我们的推理的唯一方式是使它们同数学一样切实,这样我们能一眼就找出我们的错误,并且在人们有争议的时候,我们可以简单的说: 让我们计算[calculemus],而无须进一步的忙乱,就能看出谁是正确的。" (发现的艺术 1685,W 51)

莱布尼茨的演算推论器,很能让人想起符号逻辑,可以被看作使这种计算成为可行的一种方式。莱布尼茨写的备忘录(帕金森1966年翻译了它们)可以被看作是对符号逻辑的探索--所以他的演算--上路了。但是 Gerhard 和 Couturat 没有出版这些著作,直到现代形式逻辑在 1880 年代于 Frege 的概念文字 和 Charles Peirce 及他的学生的著作中形成,所以就更在乔治·布尔和德·摩根在 1847 开创这种逻辑之后了。

德国大数学家莱布尼茨三角形是怎样产生的

莱布尼茨简介是这样介绍他的:莱布尼茨是德国著名的数学家,他是公开微积分方法的第一人,并且符号被流行运用。而比莱布尼茨先使用微积分的是牛顿。莱布尼茨生于1646年,在他79岁的时候逝世。莱布尼茨在中年阶段身体素质急剧下降,智力严重衰退,而健康出现危机的最严重的一次是莱布尼茨去了意大利以后。莱布尼茨在五十岁的时候就开始研究古代中国。  

  莱布尼茨画像

在莱布尼茨幼小的时候,他就展露自己的聪明才智了。在他十三岁的时候,就像其他小朋友读小说一样轻轻松松地就能读懂艰涩难懂的论文了。他提出了无穷小的微积分计算的方法,并且发表了比伊萨克·牛顿爵士手稿早三年的研究成果,但是伊萨克·牛顿爵士却说自己是第一个发现这些研究成果的。莱布尼茨懂得取悦宫廷的人并且从中得到知名人士的帮助。斯宾诺莎的哲学给了莱布尼茨很多启发,也教会他很多,虽然他不赞同斯宾诺莎的观念。

他曾经服务于汉诺威宫廷,也许是与牛顿有矛盾,所以在乔治一世成为英格兰国王时没有被邀请。随后他的影响力渐渐的下降了,直到后来没有人再关注他,他就是在这种被人忽视的情况下逝世的。在莱布尼茨死后,他的好友也就是他生平最为敬重的人伯.方特纳尔为他撰写生平事迹。莱布尼茨一生都未曾结婚,本来在他50岁的时候想要结婚的,但是女方却说还需要一段时间,因此他们一直没有成婚,以上便是莱布尼茨简介。

  莱布尼茨三角形

莱布尼茨三角形是怎样产生的呢?这源于惠更斯给莱布尼茨出了一道他正在和别人竞赛的题。这道题的题面是这样的:求三角级数(1,3,6,10,…)倒数的级数之和。莱布尼茨非常圆满地解决了这个问题。第一次成功激发了莱布尼茨进一步学习数学的兴趣。因为惠更斯,他了解到了许多,于是开始研究起曲线以及图形面积、图形体积的问题。后来学习了笛卡尔的几何学,于是产生了对代数问题的研究。 

  莱布尼茨画像

在那个时期,切线问题和求机的问题被数学界密切关注,莱布尼茨便在前人的基础上提出了一个方法,这个方法的核心就是特征三角形。他建立了一个特征三角形,这个特征三角形由dx,dy以及PQ(弦)所组成的。dy表示两个相邻项值的差值,dx代表相邻的序数的差值,接着在数列中插入若干个dx,dy,过渡到任意一个函数的dx,dy。而特征三角形的两条边实则就是任意函数的dx,dy;再说说PQ,PQ是"P和 Q之间的一条曲线,并且是T点上的切线的一部分。

莱布尼茨应用这个特征三角形,很快就想到了两个关于曲线切线和求积的问题。继而很快便推导出许多新的结论。同样利用莱布尼茨三角形,莱布尼茨也得到了平面曲线的面积公式。在求面积方面,卡瓦列里的思想深深影响着莱布尼茨,觉得曲线中的面积其实是无穷多的小矩形的面积之和。

  莱布尼茨微积分

说到莱布尼茨微积分,要先从他的生平开始说起。1646年的7月,莱布尼茨出生在德国的莱比锡。他的父亲是莱比锡大学的教授,但是在六岁的时候便逝世了。他父亲唯一留给他的是大量丰富的藏书,莱布尼茨在这些藏书中学到了许多知识。长大后的莱布尼茨进了莱比锡大学学习法律专业,继而转入耶拿大学。 

  莱布尼茨画像

莱布尼茨在大学里刻苦专研,一边学习哲学一边学习欧式几何。在后来获得法学的博士学位之后,年轻的莱布尼茨开始在美因茨宫廷里担任职务。后来莱布尼茨在当外交官的时候,结交了很多科学家,包括惠更斯。惠更斯对莱布尼茨的影响很深,尤其是自然科学中的数学。后来在莱布尼茨去伦敦的时候,他又认识了胡克等人。

莱布尼茨在巴黎待了四年,不过这四年也是他数学登峰造极的时候。他研究了费马、笛卡尔等人的数学著作,写了很多数学笔记,因为这些笔记不系统因此没有发表,但是这里面包含了莱布尼茨的微积分思想,这也是莱布尼茨微积分的标志。从他的数学笔记可以看出他的微积分的思想来自于对和与差可逆性的研究。后来莱布尼茨来到德国,他一直担任图书馆馆长与枢密顾问一职,总共任职四十年。后来他与别人一切创办了《博学学报》杂志。1684年,莱布尼茨在这个杂志上发表了自己对微积分理解的论文,简称《新方法》。

莱布尼茨哲学思想

莱布尼茨非常熟悉古罗马古希腊哲学,并且熟悉他所处的时代的哲学学说以及一些科技成就。在那个充满哲学气息的时代,莱布尼茨也孕育了属于自己的莱布尼茨哲学思想。他有一套单子论,他认为没有人解决“一”与“多”的哲学问题,不管是古希腊罗马的学者也好,还是笛卡尔、洛克、培根等人都没有完全阐释清楚这个问题。  

  莱布尼茨画像

莱布尼茨更倾向于原子理论,但是这不代表他接受所有的原子理论,比如德谟克里特的原子理论他就保持反对的态度。德谟克里特认为原子是构成万物的物质实体,但是莱布尼茨却认为无论原子是否构成了万物,原子仍旧是空间的一小部分,而空间的一小部分是不可能不可分的,可分的东西也一定是部分构成。也就是说,万物是由原子构成的,但不是德谟克里特所说的物质的原子,而是精神的原子,于是便有了他的单子论。

莱布尼茨哲学思想中的单子论具备了几个基本性质:单子没有部分,不可分,所以它不能够用自然的方法结合产生或者也不能够通过分解而被消灭不见。单子是属于非物质的精神方面的东西,精神方面是没有形体的,所以是单纯的,不可分的。单子的数目是有限量的,必须承认实体的杂多性。在莱布尼茨眼中,样式的差别原因在于单子的差别。最后一点,单子是有知觉的,因为单子有知觉,所以莱布尼茨哲学思想中他把单子称作是灵魂。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。